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Using density-functional theory calculations on a variety of model surfaces, we demonstrate that the low
theoretical quantum capacitance of graphene-based electrodes can be significantly improved by altering local
structural and morphological features. Common point defects, strain, and surface rippling are considered,
as well as differences between locally single-layer and multilayer configurations. Local curvature-induced
strain is particularly effective at improving quantum capacitance, as are Stone-Wales defects, and hydrogen
adsorbed on dangling bonds. Single-layer graphene is found to exhibit poor screening behavior of the double-
layer potential when compared with multilayer samples, suggesting higher area-specific capacitance can be
obtained with samples a few layers thick. An approximation for the quantum capacitance based on a rigid
shift of the density of states with applied bias proves reasonable for single-layer graphene, but breaks down
for multilayer samples due to rehybridization of π∗ states. Our results demonstrate the viability of local
structural engineering as a tool to optimize graphene derivatives for use as supercapacitor electrodes.

I. INTRODUCTION

Supercapacitors have emerged as a highly promis-
ing device technology for temporary electrical storage,
thanks to intrinsically high power densities that enable
fast charging and discharging, as well as excellent cy-
cling behavior. Ideal supercapacitor electrode materi-
als should exhibit high electrical conductivity, high spe-
cific surface area and area-specific capacitance, as well
as good mechanical strength, yet be chemically inert to
ensure long device lifetime. For these reasons, sp2 car-
bon materials have attracted a great deal of attention.1–4

Nevertheless, limitations in the energy density of carbon-
based supercapacitor electrodes remain a significant im-
pediment.5

Besides development of advanced electrolytes, efforts
towards increased capacitance have mostly been focused
on optimizing the overall electrode morphology in order
to increase the surface area and to take advantage of
recently discovered pore size effects.2,6–8 The underly-
ing notion is that energy storage nominally occurs in the
electric double layer present at the electrode-electrolyte
interface, and that the capacitance is therefore propor-
tional to the active contact area. Furthermore, the ca-
pacitance of nanopores can depend strongly on the pore
size; for example, it has been shown to increase threefold
as the pores become smaller than the size of the solvated
ion.7 However, it is important to emphasize that a strat-
egy based exclusively on increased electrode-electrolyte
contact area and pore morphology neglects the crucial
role played by the electronic structure of the carbon elec-
trode itself.

a)Electronic mail: brandonwood@llnl.gov

The importance of electronic structure in determining
the area-specific capacitance of an electrode/electrolyte
interface has been suggested in the past.9,10 It is also an
accepted concept in the field of electrochemically gated
graphene-based field-effect transistor devices.11 However,
in the field of electrochemical supercapacitors, the effect
of quantum capacitance on device performance has at-
tracted surprisingly little attention. This is despite its
increasing relevance as high surface-area synthesis tech-
niques improve and traditional morphological limitations
are overcome.12–15 As an example, a recently synthe-
sized graphene-derived electrode demonstrated an active,
electrolyte-accessible surface area approximating that of
a mass-equivalent graphene sheet, with both top and bot-
tom electrode surfaces in contact with the electrolyte so-
lution.5,16 Nevertheless, the area-specific capacitance was
shown to decrease with increasing active surface area, in
direct conflict with predictions based solely on electrode
morphology.4,5 Based on these and similar results, it is
clear that a new improvement strategy that directly ac-
counts for the intrinsic electronic structure of the elec-
trode is required.

This paper uses first-principles calculations on a va-
riety of model systems in order to explore the nature
and origin of intrinsic limitations in the capacitance of
graphene-derived carbon electrodes, as well as to suggest
strategies for improvement. We show that the capac-
itance limitation of graphitic carbon-based electrodes is
indeed traceable to low electrode quantum capacitance as
the limit of single-layer, graphene-like local morphology
is approached, which directly illustrates the lack of avail-
able states for carriers to occupy upon charging. More
significantly, we show that the limiting low density of
states, and thus the capacitance, can be enhanced by
tuning the local defect structure, morphology, and thick-
ness of a carbon-based electrode. By investigating and
evaluating each of these possibilities independently, we
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attempt to provide a theory-inspired road map that may
be used to devise coherent design strategies for improving
the capacitance in graphene-derived electrode materials.

II. COMPUTATIONAL METHODS

Density functional theory (DFT) calculations were per-
formed within the plane-wave pseudopotential formal-
ism, as implemented in the Quantum-Espresso code.17

Ultrasoft pseudopotentials18 were employed with plane-
wave and charge-density cutoffs of 30 and 300 Ry, respec-
tively. The Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional was used.19 For the point defects,
3
√
3× 3

√
3 hexagonal supercells (54 carbon atoms) were

used, with the lattice parameter fixed to that calculated
value for pristine graphene (2.46 Å). For the rippled
surfaces, 4 × 4 hexagonal supercells (32 carbon atoms)
were used. Rippling was induced by decreasing the in-
plane lattice parameter perpendicular to the zigzag di-
rection, convoluting the out-of-plane coordinates with a
sinusoidal variation, and relaxing the resulting structure
within the compressed unit cell. The folded geometry
was produced in a similar manner, using an orthorhom-
bic 2

√
3 × 9 supercell (8 atoms across, 104 atoms to-

tal). The cell was compressed parallel to the zigzag direc-
tion and relaxed after convolving with a sinusoidal vari-
ation. The degree of compression was chosen such that
the spacing between the folds matched the experimen-
tal interlayer spacing in graphite. For all other surfaces,
including in-plane strain and thickness calculations, the
primitive cell was used. The interplanar spacing of the
multilayer samples was fixed to the experimental value.
Except where indicated, all ionic degrees of freedom were
relaxed to determine equilibrium structures. Relaxations
were performed using a 12×12 in-plane k-point mesh for
the primitive cell, which was increased to 96×96 for ac-
curate determination of the density of states for the final
configuration. For larger supercells, this same k-point
mesh density was retained. A gaussian electronic smear-
ing of 0.007 Ry was applied to aid k-point convergence.
For calculations under a fixed bias potential, the effective
screening medium (ESM) method20 was employed.

III. RESULTS

A. Definition of capacitance

The total capacitance of an electrode-electrolyte inter-
face can be modeled as an equivalent series circuit of com-
ponent capacitance contributions from the solid electrode
(Cs) and the liquid electrolyte (Cℓ, itself consisting of
Helmholtz and diffuse regions).9,21 This series represen-
tation is used routinely in fields such as graphene-based
transistor devices;11 here we also apply it to supercapac-

itors. Within this model, the contributions sum as

C−1
total = C−1

s + C−1
ℓ , (1)

from which it is clear that the smaller of the two com-
ponent terms will limit the overall device capacitance.
Note that this construct assumes that Cs and Cℓ can be
treated independently, whereas in practice, they demon-
strate a complex and ill-understood interdependency.21

Nevertheless, we adopt this model as a useful first-order
approximation for the purpose of devising improved elec-
trode optimization strategies.
For a perfect screening medium such as an ideal metal,

the intrinsic electrode capacitance is effectively infinite
and does not play a role in determining the device capaci-
tance, and excess charge remains confined to the surface.
However, in carbon materials, perfect screening is not
attainable. In this case, the electrode capacitance Cs is
represented by the quantum capacitance Cq, which can
be evaluated directly from the electronic density of states
(DOS) at a given voltage V :

Cq(V ) =
∂Q

∂V
= e2 ×DOS(−V e). (2)

The above definition assumes the voltage V is referenced
to the zero-bias Fermi level.
However, for supercapacitor applications, the most im-

portant limiting quantity is usually the total energy stor-
age capacity. This quantity is based not on the differen-
tial capacitance, but rather on its value integrated over
a complete charge/discharge cycle, assuming equilibrium
conditions (i.e., slow charge/discharge). The integrated
quantum capacitance is therefore given as a function of
charging voltage by:

C int
q (V ) =

Q

V
=

1

V e

∫ V

0

Cq(V
′) dV ′. (3)

Because we are concerned primarily with providing
guidelines for enhancing the energy density of graphene-
based supercapacitors, we focus on the integrated capac-
itance in this paper.
Nevertheless, the differential and integrated capaci-

tances are often mistakenly used interchangeably.22–24

This is in part because the two quantities are degener-
ate for ideal metallic electrode behavior. However, if the
electrode behaves non-ideally, as is the case for graphene-
based materials, it is important to distinguish between
them when comparing theoretical predictions with ex-
perimental measurements. For instance, cyclic voltam-
metry and galvanostatic measurements can be used to
derive the integrated or differential capacitance, whereas
impedance spectroscopy is used to assess the differential
capacitance.23 Similarly, continuum capacitance models
are generally based on integrated capacitance, yet first-
principles calculations often report differential capaci-
tance only.
In principle, the shape of the density of states in Eq. 2

depends implicitly on the charge, and by extension, the
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voltage. However, for small bias, it is assumed that this
dependence is minor, and that slow charging or discharg-
ing simply changes the Fermi occupation of an otherwise
fixed density of states. We refer to this as the “fixed-band
approximation,” within which all calculations presented
here are performed unless otherwise indicated. It turns
out that the validity of this approximation is limited to
single-layer samples, as discussed below.

B. Pristine graphene

The area-specific and gravimetric quantum capaci-
tance of pristine graphene for a ±1.5 V range is shown
in Fig. 1. The calculation is carried out within the
fixed-band approximation, and shows both the integrated
(Eq. 3) and differential (Eq. 2) capacitances. The differ-
ence between the two capacitances for graphene is clearly
manifested: the near-linear dispersion of the DOS around
the Fermi level translates to an integrated capacitance
that is smaller than the differential value by about a fac-
tor of two. Note that energies below the Fermi level cor-
respond to positive bias (electron depletion), whereas en-
ergies above the Fermi level correspond to negative bias
(electron accumulation).
Looking at the integrated capacitance, the results

clearly demonstrate that for much of the ±1.5 V range,
the area-specific Cs is smaller than typical values of Cℓ

(Fig. 1 shows one example, for Cℓ = 20 µF/cm2). This
means that the total capacitance is indeed limited by the
dearth of available states for electrons and holes near the
Dirac point, as has been suggested.5,9,10,25 To further il-
lustrate this point, we computed the capacitance of a fici-
tious graphene-equivalent electrode that has a constant
DOS instead of the known linear dispersion. The con-
stant DOS resembles an ideal 2-D free electron system
in which the charge remains confined to the surface. A
graphene unit cell was assumed, with the DOS from the
minimum valence level to the Fermi level replaced by its
average value over that range. In this case, Fig. 1 shows
that the integrated and differential capacitances have an
identical value that is significantly greater than the typ-
ical Cℓ, such that the latter becomes limiting.
Note that the value of C int

q in Fig. 1 at 0 V is nonzero.
The reason for this is twofold. First, electronic smear-
ing is employed to limit the size of the k-point mesh.
This imposes an effective temperature on the electrons
(1100 K) and removes the ideal behavior at the Dirac
point. (We note that experimental measurements should
exhibit a similar but lesser effect if performed at room
temperature.) Second, there are intrinsic numerical inac-
curacies associated with dividing two near-zero quantities
in Eq. 3, making reliable calculation near 0 V difficult for
samples with low densities of states at the Fermi level.
The capacitance in Fig. 1 is generally higher at nega-

tive bias (i.e., testing unoccupied states above the Fermi
level) than at equivalent positive bias, in agreement with
experiments.26 The difference is relatively minor for small
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FIG. 1: Comparison of theoretical integrated (solid
black line) and differential (dashed black line) quantum
capacitance for pristine graphene, calculated within the
fixed-band approximation. The dotted black line shows
the result for a fictitious idealized graphene in which

the electronic DOS is replaced with a constant value for
all energies above the minimum occupied valence level.
Here, the constant DOS value represents the average
graphene DOS over all energies from the minimum

occupied valence level to the zero-bias Fermi level. For
the fictitious system, the integrated and differential
capacitances are degenerate. A typical area-specific

double-layer capacitance of Cℓ =20 µF/cm2 is shown for
reference (dash-dotted red line).

voltages, but becomes quite large beyond ±0.6 V, due to
the breakdown in the linear dispersion at negative bias.
In the region where the dispersion remains approximately
linear (say, from −0.5 V to 0.5 V), we can fit the differen-
tial quantum capacitance data to the analytical expres-
sion for the linear-dispersion quantum capacitance. This
allows us to extract the equivalent Fermi velocity vF. In
the limit of zero temperature, the quantum capacitance
expression for a linear dispersion DOS becomes27

Cq(V ) ≈

∣

∣

∣

∣

∣

2e3V

πh̄2v2F

∣

∣

∣

∣

∣

. (4)

Using Eq. 4 and performing a linear regression of the dif-
ferential capacitance data in Fig. 1, we obtain a Fermi
velocity of 8.2 × 105 m/s. Although in good agreement
with other generalized gradient-based DFT methods,28

this value is 18–29% smaller than values reported in the
literature.26,29–34 There are a few potential reasons for
the experiment-theory discrepancy. First, PBE could be
underestimating the Fermi velocity due to improper de-
scription of nonlocal exchange, as has been suggested pre-
viously.28,35 Second, the fixed-band approximation used
in our study does not account for the presence of the elec-
trolyte and the interfacial electric field, and may there-
fore be overestimating the capacitance. Third, intrinsic
defects are introducing additional carriers in the region
near the Fermi level in the experiments, which has the
effect of increasing the observed Fermi velocity in that



4

region. Further study is required to determine which
combination of these forms the dominant contributor.

C. Thickness dependence and screening behavior

The experimentally observed decrease in area-specific
capacitance near the single-layer limit5 suggests that ex-
cess charge induced on a graphene substrate may not be
effectively screened within the electrode. This relates to
the low concentration of surface states for pristine single-
layer graphene, as shown in Fig. 1. In this event, there
may be a benefit to using multilayer graphene struc-
tural units to realize higher area-specific quantum ca-
pacitance, as the additional layers can contribute to the
image charge. Additional layers could be especially valu-
able when both faces of the electrode are simultaneously
exposed to the electrolyte, as in most electrode designs.
Although it is possible to perform a straightforward

fixed-band quantum capacitance calculation for multi-
layer graphene, this would not directly (or indirectly) ac-
count for the presence of the electrolyte-induced electric
double layer (EDL). The EDL induces a field at the in-
terface that decays into the electrode. In multilayer elec-
trodes, the outer layers see a different potential from the
inner layers, with the degree of the difference determined
by the screening properties of the electrode. It is there-
fore useful to gain a measure of the extent of the screening
length. From this, we can derive the minimum thickness
for near-complete screening of an interfacial double layer,
and consequently of maximal area-specific capacitance.
We evaluate the electrode screening properties as a

function of layer thickness using the Effective Screening
Medium (ESM) method.20 The ESM method modifies
the Hartree potential via a Green’s function formalism
to simulate insertion of the electrode slab between two
virtual media with specified dielectric constants. We po-
larize the slab by applying a fixed electric field of 0.4 V/Å
between the two virtual infinite-dielectric perfect metals.
This is comparable to the interfacial field strength gener-
ated by the EDL. The decay of the polarization response
into the interior of the multilayer electrode slab is then
used to obtain a measure of the Debye-Hückel screening
length.
Figure 2 shows the response of the charge density to

the application of the electric polarization field as a func-
tion of slab thickness. We use ABA stacking for all sam-
ples. It is immediately obvious that for thinner slabs,
the polarization response does not fully decay within the
electrode. This is a manifestation of the low density of
surface states, which forces displaced charge to the in-
ner electrode layers. Beginning with the six-layer slab,
screening behavior improves significantly. For the thicker
slabs, the decay of the polarization response can be fit to
an exponential curve. For a field strength of 0.4 V/Å, the
1/e screening length is found to be 2.2 Å. To obtain a 95%
screening of the polarization response therefore requires
6.6 Å of material, which corresponds to about two addi-
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FIG. 2: Charge density accumulation or depletion upon
application of an electric field (0.4 V/Å) perpendicular
to n stacked graphene layers, shown as a function of

slab thickness. Results for n=1,2,4,6, and 8 are shown.
In each case, the density is averaged parallel to the

graphene basal plane. The red dashed lines indicate the
positions of the graphene layers.

tional layers beyond the surface. This should be doubled
for supercapacitor operation in which the both surfaces
are assumed to be in contact with the electrolyte, mean-
ing graphitic electrodes should be at least five or six layers
thick in order to generate the highest area-specific capac-
itance. However, for actual device engineering, this must
be mediated by considerations of gravimetric and volu-
metric capacity, which will decrease with thicker samples.

The fact that successive layers in multilayer graphene
experience a different potential under actual operation
due to the presence of the electrolyte, as we have sup-
posed, is borne out clearly in the ESM calculations of
Fig. 2. This same approach allows us to evaluate the
validity of the fixed-band approximation for calculating
the quantum capacitance of multilayer slabs. In doing
so, we find that the fixed-band approximation fails even
for bilayer slabs, and more spectacularly for thicker slabs.
This can be seen in Fig. 3, which plots the band struc-
ture of n-layer graphene for n=1, 2, and 8 before and
after application of the electric polarization field. In or-
der to permit direct comparison, we have aligned the zero
of energy to the Fermi level in the absence of the electric
field. For single-layer graphene, the band structure does
not change upon application of the polarizing field, sug-
gesting the fixed-band approximation holds well within
the voltage range of interest. However, for bilayer and 8-
layer graphene, the presence of the field breaks the sym-
metry and induces level splitting in the states nearest
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of energy is aligned to the Fermi level in the absence of
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the Fermi level. For bilayer graphene, this opens a gap
near the K point, as reported previously.36–38 For 8-layer
graphene, the field-induced level splitting instead creates
a near-continuum of bands. Interestingly, for the thicker
slab, there is also a contribution to the density of states
from the π∗ states, which are driven lower in energy by
the field until they mix with the states nearer the Fermi
level. Although this shift of the π∗ states is also seen for
the thinner samples, its magnitude depends on the thick-
ness (it is barely visible beyond E −EF = 2.0 eV for the
bilayer). It is worth noting that there is a correspond-
ing shift of the π states upward towards the Fermi level;
however, the degree of the shift is much smaller, and does
not appear within the ±2 V window even for the 8-layer
slab. A similar asymmetric π-π∗ field response has been
reported in recent experiments on bilayer graphene.37,38

We emphasize that the rehybridization of states near
the Fermi level for thicker slabs in Fig. 3 would not
be captured in the fixed-band approximation, nor would
the observed level splitting at the K point for multilayer
slabs. Moreover, the response is asymmetric, with the π∗

states apparently much more sensitive to an applied field
than the π states. As such, detailed studies of the quan-
tum capacitance of multilayer slabs should be done using
more direct methods rather than relying on the fixed-
band approximation. We are currently investigating this
in detail. On the other hand, single-layer graphene can
be adequately described within the fixed-band approxi-
mation for the voltage range of interest, at least for field
strengths on the order of 0.4 eV/Å. Naturally, the magni-
tudes of the level shifts in Fig. 3, as well as the observed
screening length, should depend on the field strength.
The dependence is likely quasi-linear, matching the be-
havior reported for screening radius in the basal plane.39

In this regard, the fixed-band approximation could fail
even for single-layer graphene at large field strengths.
However, for most realistically achievable field strengths,
this is unlikely to be the case. As such, we continue to
rely on the fixed-band approximation for the structures
in the remainder of this paper, all of which are derived

from single-layer geometries.

D. Point defects

Several experimental measurements of the capaci-
tance of single-layer graphene have exhibited signifi-
cant deviations from the zero-temperature ideal limit,
and from the pristine graphene behavior shown in
Fig. 1.26,29,30,40,41 Common features include a signifi-
cantly enhanced, nonzero density of states at the Fermi
level, and enhanced capacitance at potentials close to
zero bias that is largely flat across a range of tens or hun-
dreds of meV. This leads to better-than-predicted capac-
itive behavior in this region, which authors have gener-
ally attributed to additional states due to defects or local
electronic density oscillations. In other words, the elec-
tronic signature of graphene implies that it is unlikely
to retain a zero-temperature, defect-free structure un-
der actual testing conditions. It is reasonable to assume
that this effect will be amplified in intrinsically defect-
rich systems, such as polymer-derived, three-dimensional
graphene structures.16 Selective and deliberate inclusion
of certain defects through controlled synthesis may there-
fore be used as a tool to enhance the quantum capaci-
tance. Accordingly, we devote the following sections to
a detailed analysis of the effects of local modifications to
graphene-based materials.
We begin with a discussion of graphene point defects.

A variety of native point defects have been recorded in
graphene samples, including the Stone-Wales defect (55–
77), various divacancy structures (e.g., 5–8–5 and 555–
777), and monovacancies (5–9).36,42 Models of graphene
in the presence of these defects are depicted in Fig. 4.
Each was tested for its effect on the quantum capaci-
tance of a graphene electrode within the fixed-band ap-
proximation. In the case of the monovacancy, a Jahn-
Teller distortion creates a five-membered ring via an elon-
gated bond between two of the carbons nearest the va-
cancy. This leaves the third carbon with an exposed
dangling bond that is similar to a zigzag edge, which
we also tried passivating with hydrogen or oxygen. Of
the tested defects, only the unpassivated monovacancy
possesses a nonzero magnetic moment, although this is
removed upon addition of hydrogen or oxygen.
The calculated quantum capacitance upon selective in-

troduction of each of the point defects in a 54-atom su-
percell is shown in Fig. 5. It is immediately evident that
the addition of defects can increase the capacitance pro-
file considerably. The degree to which this is the case
depends both on the defect species and on the applied
potential; however, in almost all instances, the effect is
to increase C int

q with respect to the graphene baseline.
Particularly large contributions near the Fermi level are
observed for the 555–777 divacancy and for the 5–9 mono-
vacancy in the presence of a hydrogen. The capacitance
profile of these two look very similar across the voltage
range in the Figure, with additional increases in C int

q ex-



6

FIG. 4: Types of native graphene point defects
considered in the present study.
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FIG. 5: Theoretical integrated quantum capacitance
C int

q of graphene upon addition of the point defects in
Fig. 4. A fixed defect concentration of one defect per 54

carbon atoms (7× 1013 cm−2) was used.

pected at positive potentials.

The unpassivated monovacancy enhances C int
q under

negative bias, but has little effect at positive voltages be-
yond +0.5 V. Interestingly, this picture is reversed when
the dangling bond is passivated either by hydrogen or
oxygen, with enhancements instead appearing at posi-
tive voltages and tapering off at negative bias. The es-
pecially large contribution near the Fermi level from the
hydrogen-passivated monovacancy resembles similar cal-
culations of hydrogen adsorption on pristine graphene,43,
and suggests that hydrogen chemisorption could con-
tribute significantly to quantum capacitance in graphene
derivatives with high concentrations of exposed edges or
pores. Indeed, local chemical modification could repre-
sent a valuable engineering strategy; we are currently
pursuing this research direction. Note that the 55–77
Stone-Wales defect is the only point defect we tested that
did not appreciably change the density of states at the
Fermi level. Nevertheless, it does increase the observed
C int

q at nonzero bias in both positive and negative direc-

TABLE I: Defect formation energies ∆Ef for the point
defects in Fig. 4, calculated within a 54-atom supercell

with respect to pristine graphene. For the
hydrogen/oxygen-passivated monovacancy, gas-phase

molecular H2/O2 was used as a reference.

Defect ∆Ef (eV)

Stone-Wales (55–77) 5.3

Divacancy (777–555) 7.2

Divacancy (5–8–5) 8.1

Monovacancy (5–9) 7.7

Monovacancy +H (5–9) 5.8

Monovacancy +O (5–9) 4.7

tions. This agrees with previous DOS calculations.43–45

The models in Fig. 4 correspond to extremely high
defect densities (one per 54 carbon atoms), making the
enhancements with respect to pristine graphene appear
especially large. These should be scaled to match ob-
served concentrations. We show the calculated forma-
tion energies (based on the 54-atom supercell) for each
of the point defects in Table I. The formation energies
are calculated according to

∆Ef = E(defect)−
m

54
E(graphene)−

{

1

2
E(H2/O2)

}

,

(5)
where m represents the number of carbon atoms in the
defective supercell. The last term applies only in the case
of the hydrogen- and oxygen-adsorbed monovacancies,
for which the energy of the reference H2/O2 gas must also
be subtracted. Note that this definition in Equation 5 as-
sumes a neutral electrode, in which the defect complexes
are uncharged; allowing for charged defects will slightly
shift some of the values in Table I.45 The defect forma-
tion energies are sufficiently large that one should not
expect significant enhancements in the C int

q of pristine
graphene from point defects at room temperature. How-
ever, for highly disordered graphene derivatives, this pic-
ture is likely to change, and the values in Table I become
useful for gauging the relative contributions of the curves
in Fig. 5. Because selective introduction of certain native
point defects over others may be difficult, the results in
this section are probably best examined collectively. Still,
it is clear that the presence of defects generally increases
the capacitance of graphene-based electrodes.

E. Local strain and curvature

Since the physical morphology of the electrode surface
represents an additional possible variable in the process-
ing of nanoporous carbon substrates, we also ran a se-
ries of simulations investigating the capacitance of curved
and strained graphene surfaces.36 The effects of in-plane
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FIG. 6: Theoretical area-specific integrated quantum
capacitance C int

q of graphene upon application of
in-plane uniaxial strain (top panel) and biaxial strain
(bottom panel). For the uniaxial case, the strain was
applied parallel to the zigzag direction. Results are

shown for 5% and 10% linear expansion of the in-plane
lattice parameter (5% and 10% areal increase for

uniaxial strain; 10% and 21% areal increase for biaxial
strain). For the biaxial case, results are also shown for

an in-plane 10% linear compression in the lattice
parameter (19% areal decrease).

strain were tested, as well as surface buckling under com-
pression.

The changes in fixed-band capacitance upon applica-
tion of high uniaxial strain applied parallel to the zigzag
direction, and upon application of biaxial strain applied
uniformly along both planar directions, are shown in
Fig. 6. Linear expansions of the equilibrium in-plane
lattice parameter by 5% and 10% were examined (for
biaxial strain, these were applied equivalently in both
in-plane directions). We also tested the case of biaxial
compression based on a 5% linear contraction in the lat-
tice parameter, under the constraint of no out-of-plane
atomic rearrangement. We recognize that the magnitude
of our applied strains are high, but they are illustrative
for modeling purposes. In addition, the surface variations
in nanoporous carbon, and the nonequilibrium process
by which they are produced, are likely to generate local
regions with higher-than-normal strain energy.

The results in Fig. 6 show a general trend of increased
area-specific C int

q with in-plane tensile strain. This is
true even after accounting for the correspondingly en-
hanced surface area (the gravimetric C int

q would show an
even more dramatic effect). For the range of ±1.5 V, the
changes scale with voltage and with the level of applied
strain. This agrees with previous calculations of reduced
Fermi velocity in strained graphene.46 The increase in
C int

q for biaxial expansion of the lattice parameter by
5% are approximately equal to the 10% uniaxial expan-
sion case. Since these translate to essentially equivalent
surface areas, this suggests that the directionality of the

π*

FIG. 7: Theoretical area-specific integrated quantum
capacitance C int

q of graphene upon surface rippling
under compression. Results are shown for ripples of four
different characteristic wavelengths (λ = 6.8 Å 7.3 Å,
7.7 Å, and 8.1 Å). The inset shows the density of states

of rippled graphene (λ = 6.8 Å), projected onto a
carbon atom at the peak of the ripple (point of highest

curvature) and onto a carbon atom at the flattest
midpoint between two successive peaks. In both the

inset and the main figure, the dashed line indicates the
result for pristine graphene.

applied strain is less important than the magnitude of
the areal increase.

According to Fig. 6, in-plane compressive strain tends
to dampen C int

q with respect to pristine graphene. How-
ever, under compression, a graphene surface is known to
corrugate in order to dissipate strain energy.47 To simu-
late such corrugation, we compressed the cell along the
zigzag direction and allowed for sinusoidal variation of
the out-of-plane coordinates. Four different values of in-
plane compression were explored (5%, 10%, 15%, and
20% linear compression), corresponding to different char-
acteristic wavelengths λ of the sinusoidal surface ripples:
λ = 8.1 Å 7.7 Å, 7.3 Å, and 6.8 Å. The resulting changes
in C int

q are shown in Fig. 7. The calculations demon-
strate that a very large enhancement of the quantum ca-
pacitance can be realized upon rippling, and that this
enhancement scales with curvature (inversely with wave-
length). Note that the contribution to the capacitance is
opposite in sign from what we saw for in-plane compres-
sion. Because surface buckling is a lower-energy transfor-
mation then in-plane compression, and because tension
also enhances capacitance, strain of either sign is likely
to be linked to increased quantum capacitance. Accord-
ingly, electrodes should be engineered to maximize local
variations in morphology in order to increase local strain
magnitudes; planar geometries are inefficient by compar-
ison.

Since even pristine graphene is known to exhibit corru-
gation by room-temperature activation of low-frequency
modes,36 it is reasonable to assume some degree of capac-
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itive enhancement of the type seen in Fig. 7 should be
present natively. As such, one should expect somewhat
more aggressive scaling of C int

q with voltage magnitude
than is predicted for ideal graphene.

There are some characteristic features to note in the
ripple-induced changes in fixed-band capacitance de-
picted in Fig. 7. A shoulder appears in the capacitance at
positive bias, the location of which shifts towards smaller
voltages with larger curvature (shorter wavelength). The
location is at +2.0 V, +1.6 V, +1.2 V, and +0.9 V for
λ = 8.1 Å, 7.7 Å, 7.3 Å, and 6.8 Å, respectively. A
soft shoulder can also be seen at negative bias for the
highly corrugated samples, appearing around −0.5 V to
−0.8 V for the highest corrugation (λ = 6.8 Å). In real
nanoporous carbon samples, the features in Fig. 7 would
be averaged over multiple curvatures, and would most
likely manifest as a change in the slope of the capaci-
tance.

These features can be seen more clearly in the inset of
Fig. 7, which shows the density of states for one of the
samples (λ = 6.8 Å), projected onto carbon atoms at the
ripple peak, where the curvature is maximized, and at the
flattest region, where the curvature is minimized. The
feature at positive bias (below the Fermi level) appears as
a peak at E−EF = −0.9 eV. At negative bias (above the
Fermi level), there is a shoulder at E−EF = 0.6–0.9 eV,
and the π∗ peak (E−EF = 1.8 eV for pristine graphene)
shifts towards the Fermi level and splits into two peaks
at E−EF = 1.2 eV and 1.6 eV. Such characteristics may
be detectable spectroscopically as an indicator of local
morphology.

Projections onto atomic orbitals confirm that rippling
mixes in-plane px and py character into the pz states.
This weakens the π bonds and leads to smaller π-π∗ split-
ting, while simultaneously increasing the in-plane σ bond
strength (accordingly, the C–C bond length decreases by
∼2% for λ = 6.8 Å). The smaller π-π∗ splitting translates
to more accessible states at energies near the Fermi level,
which is beneficial for capacitance. A similar rationale
can be provided for the scaling of C int

q in the strained
samples (Fig. 6). In the case of rippling, there is also
some mixing of s character for energies above EF (nega-
tive bias). This contributes to the soft shoulder and the
π∗ peak splitting seen in the inset of Fig. 7. These result
from curvature-induced sp2-to-sp3 rehybridization. For
the low-curvature (long-wavelength) samples, the onset
of s character is buried beneath the π∗ peak, which ex-
plains why the soft shoulder at negative bias appears only
for shorter wavelengths. Higher curvature introduces
more rehybridization; accordingly, the higher-curvature
regions of the ripple contribute the most to the capaci-
tive enhancement. This is shown explicitly in the inset
of Fig. 7. Note that the carbon at the midway point
between two ripple peaks still shows an increase in the
density of states with respect to the pristine graphene
baseline; we believe this is an artifact of our small sam-
ple size.

As a final morphological feature, we examined the

effect of introducing a periodic fold into the graphene
framework. Unlike the ripple, the folded sample con-
tains both a graphite-like region in the fold center and
a rippled region at its edge, and can be thought of as
a maximum corrugation limit. Such folds have been
observed in real graphene samples, and are thought to
be low-energy transformations of the pristine sheet.48,49

The capacitance change, as calculated within the fixed-
band approximation, is shown in Fig. 8. Here, we show
the total capacitance change, along with the equivalent
quantity projected onto each carbon atom along the path
from highest to lowest curvature within the fold. As with
the rippled sample, the results show an enhancement in
capacitance, with the regions of highest curvature con-
tributing most. However, the enhancement is not sym-
metric about zero bias, but is seen preferentially at nega-
tive voltages. This agrees with tight-binding calculations
on a single graphene fold.50 Atomic orbital projection re-
veals this to be a π∗ feature. There is an analogous con-
tribution from the π states; however, it appears deeper
in the valence (E −EF = −2.2 eV), and contributes less
strongly to the capacitance in the ±1.5 V window shown
in Fig. 8. This is the reason for the asymmetric bias re-
sponse. Note that this is similar to the asymmetry in the
π/π∗ response in the polarized ESM results of Fig. 3.
The fold also induces metallicity, which leads to addi-

tional capacitive increases near zero bias. This effect has
been reported previously, both in calculations and exper-
iments.48 The large difference between the capacitive be-
havior of the fold (Fig. 8) and the ripple (Fig. 7) is some-
what surprising, given their structural similarity. The
origin is the graphite-like stacking in the folded sample,
which introduces hybridization of the π states between
successive layers.50 This difference highlights the large
influence of local morphology on the electronic structure
of real electrodes.

IV. CONCLUSIONS

In conclusion, we have introduced and evaluated
strategies for improving the capacitance of graphene-
derived supercapacitors that are based on modifying the
local structure and morphology of the electrode rather
than global surface area and pore geometry. To do
so, we have calculated the quantum capacitance within
the fixed-band approximation of a variety of defective
graphene-based surfaces containing point defects, as well
as local strain and curvature. Our calculations con-
firm that the interfacial capacitance of graphene-derived
electrodes is generally limited by the quantum capac-
itance, which is a consequence of the low density of
states near the Fermi level. However, the addition of
defects into the graphene structure can significantly im-
prove the calculated capacitance if introduced in suffi-
cient concentrations. For instance, the presence of hydro-
gen at vacancy-derived nanopores can increase the capac-
itance near zero bias significantly, whereas Stone-Wales
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FIG. 8: Theoretical area-specific integrated quantum
capacitance C int

q of graphene upon folding the surface
as shown in the inset. The total difference is shown
alongside spatial projections onto carbon atoms along
the edge of the fold. The corresponding carbon atom

locations are also shown in the inset.

defects have a much larger effect at higher voltage magni-
tudes. These could prove an important tool for increasing
graphene-based supercapacitor performance. Similarly,
tensile strain and rippling upon compression tend to in-
crease capacitance at higher voltage magnitudes. Folding
the graphene sheet also increases capacitance, but only at
positive potentials. Heavily curved local morphologies,
which introduce rippling, folding, and regions of local
tensile strain, should therefore be desirable over planar
geometries. An in-depth analysis of the electrode screen-
ing properties reveals that multilayer regions are far more
effective at screening the double-layer potential than are
single-layer regions, which leads to higher area-specific
capacitance. In this regard, four graphene layers ought
to be sufficient to expect nearly full screening. However,
the thickness consideration should be weighed against the
importance of gravimetric capacitance, which decreases
with thickness. Our analysis shows that the fixed-band
approximation, in which the density of states is assumed
to be rigidly shifted with changes in electronic occupa-
tion, remains reliable for single-layer samples but breaks
down for multilayer samples due to level splitting and
rehybridization of the π∗ states. It should be noted that
our calculations do not account for the interdependence
of the electrode and electrolyte contributions to the ca-
pacitance, or for the electrode stability; a more detailed
study to this effect is currently underway.
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(2005).

14C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, Nano Lett.
10, 4863 (2010).

15M. Hahn, M. Baertschi, O. Barbieri, J.-C. Sauter, R. Kötz, and
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